Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
OMICS ; 27(5): 237-244, 2023 05.
Article in English | MEDLINE | ID: covidwho-2318708

ABSTRACT

COVID-19 caused by the SARS-CoV-2 infection is a systemic disease that affects multiple organs, biological pathways, and cell types. A systems biology approach would benefit the study of COVID-19 in the pandemic as well as the endemic state. Notably, patients with COVID-19 have dysbiosis of lung microbiota whose functional relevance to the host is largely unknown. We carried out a systems biology investigation of the impact of lung microbiome-derived metabolites on host immune system during COVID-19. RNAseq was performed to identify the host-specific pro- and anti-inflammatory differentially expressed genes (DEGs) in bronchial epithelium and alveolar cells during SARS-CoV-2 infection. The overlapping DEGs were harnessed to construct an immune network while their key transcriptional regulator was deciphered. We identified 68 overlapping genes from both cell types to construct the immune network, and Signal Transducer and Activator of Transcription 3 (STAT3) was found to regulate the majority of the network proteins. Furthermore, thymidine diphosphate produced from the lung microbiome had the highest affinity with STAT3 (-6.349 kcal/mol) than the known STAT3 inhibitors (n = 410), with an affinity ranging from -5.39 to 1.31 kcal/mol. In addition, the molecular dynamic studies showed distinguishable changes in the behavior of the STAT3 complex when compared with free STAT3. Overall, our results provide new observations on the importance of lung microbiome metabolites that regulate the host immune system in patients with COVID-19, and may open up new avenues for preventive medicine and therapeutics innovation.


Subject(s)
COVID-19 , Microbiota , Humans , SARS-CoV-2 , STAT3 Transcription Factor/genetics , Lung
2.
Diagnostics (Basel) ; 13(9)2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2318441

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a rapidly progressive form of respiratory failure that accounts for 10% of admissions to the ICU and is associated with approximately 40% mortality in severe cases. Despite significant mortality and healthcare burden, the mainstay of management remains supportive care. The recent pandemic of SARS-CoV-2 has re-ignited a worldwide interest in exploring the pathophysiology of ARDS, looking for innovative ideas to treat this disease. Recently, many trials have been published utilizing different pharmacotherapy targets; however, the long-term benefits of these agents remain unknown. Metabolomics profiling and stem cell transplantation offer strong enthusiasm and may completely change the outlook of ARDS management in the near future.

3.
Comprehensive Gut Microbiota ; 2:442-458, 2022.
Article in English | Scopus | ID: covidwho-2290444

ABSTRACT

The world is currently experiencing a major pandemic due to COVID-19, a disease caused by SARS-CoV-2 infection. This virus is highly transmissible and clinically presents with a wide range of manifestations. The microbiome has a profound effect on the development of host immunity and susceptibility to infection. In severe COVID-19 patients, alterations of the gut and lung microbiome were detected. Emerging evidence indicates bidirectional crosstalk through a gut-lung axis, in which microbial metabolites, such as short-chain fatty acids, play pivotal roles in human health. In this review we will discuss the gut and lung microbiome in health and during viral infection, with a focus on SARS-CoV-2 infection. © 2022 Elsevier Inc. All rights reserved.

4.
iMeta ; 1(3), 2022.
Article in English | Scopus | ID: covidwho-2287826

ABSTRACT

Once thought to be sterile, the human lung is now well recognized to harbor a consortium of microorganisms collectively known as the lung microbiome. The lung microbiome is altered in an array of lung diseases, including chronic lung diseases such as chronic obstructive pulmonary disease, asthma, and bronchiectasis, acute lung diseases caused by pneumonia, sepsis, and COVID-19, and other lung complications such as those related to lung transplantation, lung cancer, and human immunodeficiency virus. The effects of lung microbiome in modulating host immunity and inflammation in the lung and distal organs are being elucidated. However, the precise mechanism by which members of microbiota produce structural ligands that interact with host genes and pathways remains largely uncharacterized. Multiple unique challenges, both technically and biologically, exist in the field of lung microbiome, necessitating the development of tailored experimental and analytical approaches to overcome the bottlenecks. In this review, we first provide an overview of the principles and methodologies in studying the lung microbiome. We next review current knowledge of the roles of lung microbiome in human diseases, highlighting mechanistic insights. We finally discuss critical challenges in the field and share our thoughts on broad topics for future investigation. © 2022 The Authors. iMeta published by John Wiley & Sons Australia, Ltd on behalf of iMeta Science.

5.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053497

ABSTRACT

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


Subject(s)
COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
6.
Clin Nutr ESPEN ; 51: 17-27, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996077

ABSTRACT

Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), research has focused on understanding the etiology of coronavirus disease 2019 (COVID-19). Identifying and developing prophylactic and therapeutics strategies to manage the pandemic is still of critical importance. Among potential targets, the role of the gut and lung microbiomes in COVID-19 has been questioned. Consequently, probiotics were touted as potential prophylactics and therapeutics for COVID-19. In this review we highlight the role of the gut and lung microbiome in COVID-19 and potential mechanisms of action of probiotics. We also discuss the progress of ongoing clinical trials for COVID-19 that aim to modulate the microbiome using probiotics in an effort to develop prophylactic and therapeutic strategies. To date, despite the large interest in this area of research, there is promising but limited evidence to suggest that probiotics are an effective prophylactic or treatment strategy for COVID-19. However, the role of the microbiome in pathogenesis and as a potential target for therapeutics of COVID-19 cannot be discounted.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Probiotics , Humans , Pandemics/prevention & control , Probiotics/therapeutic use , SARS-CoV-2
7.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1793721

ABSTRACT

To elucidate the molecular mechanisms that manifest lung abnormalities during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we performed whole-transcriptome sequencing of lung autopsies from 31 patients with severe COVID-19 and ten uninfected controls. Using metatranscriptomics, we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant 'classical' signature (n=23) showed upregulation of the unfolded protein response, steroid biosynthesis and complement activation, supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) that potentially represents 'cytokine release syndrome' (CRS) showed upregulation of cytokines such as IL1 and CCL19, but absence of complement activation. We found that a majority of patients cleared SARS-CoV-2 infection, but they suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in 'classical' patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients, which can be identified through complement activation, presence of specific cytokines and characteristic microbiome. These findings can be used to design personalized therapy using in silico identified drug molecules or in mitigating specific secondary infections.


Subject(s)
COVID-19 , Autopsy , Cytokines , Humans , Lung/pathology , SARS-CoV-2
8.
J Allergy Clin Immunol ; 149(1): 63-64, 2022 01.
Article in English | MEDLINE | ID: covidwho-1531506
9.
Front Cell Infect Microbiol ; 10: 619075, 2020.
Article in English | MEDLINE | ID: covidwho-1084083

ABSTRACT

Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19.


Subject(s)
Bacteria/isolation & purification , Lung/immunology , Lung/microbiology , Microbiota/physiology , Bacteria/classification , COVID-19/pathology , Gastrointestinal Tract/microbiology , Humans , SARS-CoV-2/growth & development
10.
Hum Microb J ; 17: 100073, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-694208

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a rapidly emerging disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease begins as an infection of lungs, which is self-limiting in the majority of infections; however, some develop severe respiratory distress and organ failures. Lung microbiome, though neglected previously have received interest recently because of its association with several respiratory diseases and immunity. Lung microbiome can modify the risk and consequences of COVID-19 disease by activating an innate and adaptive immune response. In this review, we examine the current evidence on COVID-19 disease and lung microbiome, and how lung microbiome can affect SARS-CoV-2 infection and the outcomes of this disease. To date there is no direct evidence from human or animal studies on the role of lung microbiome in modifying COVID-19 disease; however, related studies support that microbiome can play an essential role in developing immunity against viral infections. Future studies need to be undertaken to find the relationship between lung microbiome and COVID-19 disease.

SELECTION OF CITATIONS
SEARCH DETAIL